

Pressing Times: Can Data Tell us When & How to Navigate Out of a Counter Press?

Gerald Lim, Ashley See & Zhi Yuan Chua

Key Takeaways

- → Using a physics and rule-based based approach to quantify counterpressing via the pitch control model → Identify team-specific pressing styles and rate
- → Frequentist approach for evaluating decisions taken by a possession-regaining team facing a counterpress → Long forward balls appear to give the best return, but are only played in 12.6% of all opportunities

- → Avenues for data application:
 - ❖ Performance Analysis → How successful are my team's strategies?
 - ❖ Opposition Analysis → Where and how does the opponent like to counterpress?
 - ❖ Recruitment → Who's good at supporting plays against the counterpress?

Why Counterpressing?

"No playmaker in the world can be as good as a good counterpressing situation"

- Jürgen Klopp

Pressed For Time

Prevalence Of The Counterpress

From 2013/14 to 2019/20, Bundesliga teams counterpressed on average 23% of their turnovers, of which 31% were successful¹

In 2020/21, teams in the top 5 European league averaged 1.1 shots from high turnovers per game, accounting of 13% of open-play goal attempts²

As the defending team, how can you do better?

¹ Data-driven detection of counterpressing in professional football, Bauer and Anzer, 2021

² Season Review 2020-21, The Analyst, 2021

Questions And Challenges

→ How can teams improve their decision making upon an opponent's turnover and possible counterpress? E.g. should they (1) play against the press, or (2) clear to safety?

→ What's a good strategy to employ to play against the press? How can my team be best set up to execute it?

- → Is a "good" strategy always the best way forward against any opponent? Seemingly wrong decisions may also turn out to be the right one
 - e.g. Red Star Belgrade vs Marseille (1991 UCL Final)

Our Approach

1. Pitch control-based approach to quantify counterpressure

- Identify and evaluate potential counterpressing scenarios and trends
- Identify and evaluate common decisions and strategies against counterpressing
- 4. Applications in opponent analysis, training, recruitment, etc.

--- Tracking + Event Data (2020/21 Season)

Pro Forun

1. Pitch Control-based Approach To Quantify Counterpressure

Measuring Counterpressure

Previous studies → Yes/No detection of counterpressing e.g. rule-based/machine learning on "engineered" features

Can go we gather finer details via a different approach?

- Measure pressure like a continuous variable
- Type of counterpress?
- Time taken for the pressure to be applied/felt?
- How "good" was the counterpress? Where was its peak?

1. Pitch Control-based Approach To Quantify Counterpressure

Pitch Control in a Nutshell

Advantages

- No need for manual feature engineering
- Pitch Control condenses the multidimensional tracking information onto a 2D grid

Produced by the Gauss-Legendre adaptation of the pitch control model used in Friends of Tracking (2020)

1. Pitch Control-based Approach To **Quantify Counterpressure**

A. Ball-orientated Counterpressure (Calculation)

For every frame:

1. Pitch Control Data

2. Identify the area(s) of strategic interest: 10m circular radius around the ball

4. Calculate the average pitch control of the pressing team

Number of grid cells in radius

1. Pitch Control-based Approach To Quantify Counterpressure

A. Ball-orientated Counterpressure (Example)

Broadcast View

Tracking Data View

1. Pitch Control-based Approach To Quantify Counterpressure

A. Ball-orientated Counterpressure (Example)

Tracking Data View

Counterpressure score: Average pitch control value of Red within the selected area

Time Series View

o Forum

1. Pitch Control-based Approach To Quantify Counterpressure

Other ways to apply pressure:

B. Man-orientated Counterpressure

Area(s) of strategic pressure interest: 5m circular radii around 4 closest players to the ball

Tracking Data View

1. Pitch Control-based Approach To Quantify Counterpressure

Other ways to apply pressure:

C. Passing Lanes-orientated Counterpressure

Area(s) of strategic pressure interest: 40° arc between the closest player to the ball and the next 4 closest players

Tracking Data View

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

^{*} Occurring in the regaining team's defensive third

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Identifying counterpresses (Sustained Counterpressure)

1. Measure counterpressure for valid¹ deep opposition turnover sequences i.e.

Duration from the time of the turnover to the regaining team's loss of possession

or

6 seconds² from the turnover, whichever less

2. At least half of the measured sequence was spent under pressure (i.e. counterpressure metric > 0.5)

¹ Excluding first regain events that were clearances or tackles that put the ball out of bounds

² Motivated by the popular "6 second rule" name given for the counterpress of Pep Guardiola's Barcelona

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Ligue 1 2020/21 Counterpressing distribution by turnover/regain location

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Ligue 1 Counterpressing by strategy employed

% of all counterpresses detected in each strategy

Distribution of counterpresses via simple ranking classification method

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Ligue 1 Counterpressing Team Analysis

Counterpresses applied-received per 90

Band 4 -

Counterpresses applied and received per deep regain per 90

GERALD LIM, ASHLEY SEE, ZHI YUAN CHUA | PRESSING TIMES: CAN DATA TELL US WHEN AND HOW TO NAVIGATE OUT OF A COUNTER PRESS?

league position quartiles i.e.

Band 1: 1st to 5th

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Ligue 1 Counterpressing Team Analysis

Distribution of counterpresses received by regain zones

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Ligue 1 Counterpressing Team Analysis

Team counterpressing tendencies relative to league average

Comparing "time taken to apply maximum pressure" to pressing success

GERALD LIM, ASHLEY SEE, ZHI YUAN CHUA | PRESSING TIMES: CAN DATA TELL US WHEN AND HOW TO NAVIGATE OUT OF A COUNTER PRESS

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

How do teams handle deep opponent turnovers?

Distribution of events that follow/force a deep turnover, under pressure (outside the penalty box)

Percentage of events that were made "under pressure" (outside the penalty box)

GERALD LIM, ASHLEY SEE, ZHI YUAN CHUA | PRESSING TIMES: CAN DATA TELL US WHEN AND HOW TO NAVIGATE OUT OF A COUNTER PRESS?

2. Identify And Evaluate Potential Counterpressing Scenarios And Trends

Data Applications

Opposition Analysis

- ❖ Opponent counter pressing strategies → How, When, Where, Who?
- Use information to adopt opponent-specific strategies

Performance Analysis

- What + Where are my team's vulnerabilities?
- Streamline video analysis: "Find all counterpresses Where...
 When...
 "
- Generalise pitch control method for other passages of play e.g. passing options

Recruitment

- Calculate individual player contributions to the counterpressure metrics
- Identify or rank players who press/play well against the press

3. Identify And Evaluate Common Decisions And Strategies Against Counterpressing

Identifying common strategies against the counterpress

- Clearing the ball
- → Attempting a long pass
- Stringing short passes to beat the immediate press

Rules to automatically determine strategies

- Applying on all event frames within the first 6 seconds of the turnover
- Limitation Unable to consider unrealised attempts or intent as event data only reflects on-ball outcomes

Strategy Definitions

Clearances - A player clearing the ball in an attempt to mitigate the risk in the immediate counter press region

Strategy Definitions

Long passing - A player looking for a teammate deeper in the opposition half in an attempt to seize advantage of counterpressing team's disorientated defensive shape

Strategy definitions

Short passing - A team attempting to overload the immediate counter pressing area with more players, allowing them to play short quick passes to escape the counter press

Strategy identification and distribution

- Strategies were successfully identified for ~66% of deep regains.
- Clearances includes both those made as the first regain event (to completely avoid the counterpress), and those made when already facing a counterpress.

Distribution of long and short strategies employed against the counterpress from within the defensive third

Success metrics for strategy evaluation

- Shots attempted/conceded per counterpress sequence¹
- Using an event based Expected possession value (EPV) model such as Expected Threat (xT) and determining the xT gained/conceded² throughout each sequence

Calculating xT gained for sequences of play

¹ Analysis was performed on the 20 seconds after the team's regain, similar to Bauer and Anzer (2021)

² xT values from Karun Singh's open-source grid, trained from the 2017-18 Premier League season were used

3. Identify And Evaluate Common Decisions And Strategies Against Counterpressing

Ligue 1 teams' performances per counterpress received

Offensively

Team	xT gained	Shots attempted	
Band 1	0.0095	0.096	
Band 1	0.0066	0.067	
Band 2	0.0066	0.034	
Band 2	0.0060	0.034	
Band 3	0.0060	0.013	
Band 1	0.0058	0.027	
Band 3	0.0057	0.043	
Band 4	0.0055	0.036	

Defensively

Team	xT conceded	Shots conceded
Band 3	0.0058	0.055
Band 4	0.0055	0.051
Band 2	0.0047	0.070
Band 4	0.0044	0.048
Band 3	0.0039	0.029
Band 1	0.0036	0.036
Band 2	0.0035	0.036
Band 4	0.0035	0.040

3. Identify And Evaluate Common Decisions And Strategies Against Counterpressing

Strategy Assessment

Mean numbers are per counterpress sequence

Strategy	Mean xT gained	Percentage of positive xT gain sequences / %	Mean shots attempted	Mean xT conceded	Percentage of positive xT conceded sequences/ %	Mean shots conceded
Clearance	0.002	14.99	0.072	0.010	9.36	0.012
Long forward passing	0.008	13.25	0.048	0.003	9.05	0.020
Short passing	0.004	15.66	0.026	0.003	5.99	0.046
Dribbling/ Take Ons	0.003	10.27	0.012	0.001	5.41	0.037
Back passing	-0.003	17.34	0.032	0.008	5.53	0.000

Clearances lead to less xT gained and more xT conceded

3. Identify And Evaluate Common Decisions And Strategies Against Counterpressing

Data Applications

Training

❖ Identifying opponent's weaknesses → setting up to prepare against CP

xT conceded	Goals conceded	Strategy used against
0.0099	0.10	Long Pass
0.0065	0.04	Short Pass
0.0026	0	Others

Team A's weakness when counterpressing

Individual decision making

Recruitment

Club – transfer strategy

Team B emphasises "long pass" play down the left

- National team chemistry
- National team play styles

- Event-Tracking Data sync wasn't possible to verify for every regain sequence evaluated for the scope of this project
- Crucial for modelling and assessing time-sensitive decision making

Model Naivety

- Current measurement methods have no information on the context of the team's deep regain
- Selection Bias. "Counterpress" threshold may be strict and skip over counterpresses that were well dealt with → never registered "pressure" values

Model Skill

Models not evaluated or validated extensively with accuracy/precision tests. How sensitive are the chosen parameters e.g. area of interest radii, time durations?

- Derive more game context using tracking data e.g. turnover scenarios stemming from steady build up play/ counter-attack?
- More situational context in the metrics e.g. direction of pressure, passing lanes based on player's body orientation
- Pitch Control model improvements

Different Techniques

- Unsupervised learning to identify counterpressing strategies
- Counterpressure metrics and success frameworks can complement other methodologies e.g. existing detection methods, xReceiver models

Strategy evolution

- Incorporate tracking data into strategy definitions e.g. where do players provide passing support or options?
- Consider player styles e.g. Target Man approach, use of what midfielder types
- Counter strategy of counterpressing team

Acknowledgements

- → Our third teammate Ashley See, watching from Singapore
- → Our mentor Dafydd Steele, Liverpool FC

→ Andy Cooper and the Pro Forum team + judges

